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INTRODUCTION

Bioinvasions are increasingly having an impact on ecological and economic balances in 
both terrestrial and marine habitats (Kolar and Lodge, 2001) and, as such, are becoming 
the focus of attention. At the same time however, invasive phenomena are increasingly 
seen as a unique opportunity to explore ecological (Lockwood et al., 2007) and evo-
lutionary processes in the marine environment (Lee, 2002; Rice and Sax 2005; Wares 
et al., 2005). Much work has been dedicated to the understanding of the ecological 
consequences of introductions and resources have been allocated to prevent and con-
trol those invasions. Recently, genetic tools have been added to the approaches used to 
assess bioinvasions and together with those new results, theoretical predictions have 
been formulated. Genetic studies have been traditionally employed to answer a variety 
of questions such as to determine invasive patterns, to reconstruct the route, the source 
and the timing of invasion and to explore the historical biogeography, as evidenced by 
a growing amount of literature.

Invasive species colonizing a new environment typically face new selective pressures. 
Following fundamental principles of population genetics, their genetic variability can be 
considered integral to their capability to adapt. Indeed empirical evidence supports the 
link between invasion success and genetic attributes, such as additive genetic variance, 
epistasis, hybridization, genetic tradeoff s, the action of small numbers of genes and, 
possibly, genomic rearrangements (see Lee, 2002 for review). Nevertheless, bioinvaders 
generally harbor a sub-set of the original genetic pool, due to founding eff ects, which are 
evidenced by a genetic bottleneck. With some exceptions (e.g. Tsutsui, 2000), a reduction in 
genetic variability is predicted to make populations vulnerable, especially in their capability 
to adapt to environmental conditions, in contrast to the general success of bioinvaders.

Th e level of genetic loss during the colonization process will be determined by the 
propagule size and the diversity of founder individuals, which is related to the diversity 
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of the source population. In some cases, initial genetic bottlenecks can be dampened 
by multiple invasions, accompanied by high gene fl ow, that eventually allow invading 
populations to exhibit sustainable genetic diversity (Dlugosh and Parker, 2007). 

One of the major problems that plagued the study of bioinvasions derives from 
the fact that bioinvaders are usually observed a long time after their original invasion 
and only once they have successfully colonized the new habitat. Th is is a problem 
because, in most situations, it is diffi  cult to determine when the invasion originally 
occurred and if it is the result of a single event or successive ones. Failed invasions 
tend also not to be accounted for. In that respect, the case of Lessepsian bioinvasions 
is quite unique. 

Lessepsian invaders are organisms originating from the Red Sea that entered the 
Mediterranean Sea via the Suez Canal, opened in 1869 under the supervision of the 
engineer Ferdinand de Lesseps. With more than 300 new species added to the Medi-
terranean (Galil, 2009), including 71 species of fi shes (Bilecenoglu et al., 2008; Lipej et 
al., 2008; Golani, this volume), i.e., approximately a quarter to one half of the world’s 
marine fi sh invaders (Lockwood et al., 2007), the Lessepsian migration represents the 
‘most important biogeographic phenomenon witnessed in the contemporary oceans’ 
(Por, 1978). It is an ongoing process with new species regularly entering every year and 
certainly a massive human-mediated ‘experiment’ (Féral, 2002), with unique opportuni-
ties to study rapid evolutionary changes.

Th e vast majority of Indo-Pacifi c organisms that are currently present in the Medi-
terranean can be considered as resulting from Lessepsian migrations. Only few of them 
might possibly have a diff erent origin, following two main hypotheses. Firstly, it has 
been suggested that Tethys Sea remnants may have been present in the Mediterranean 
during the Messinian Salinity Crisis (MSC). Approximately 5.5 Mya, a desiccation 
event dried up the Mediterranean (the MSC), which later refi lled at the opening of the 
Strait of Gibraltar with the Atlantic Ocean (Bianco, 1990). Some authors have suggested 
that a few species, originally from the Red Sea (which was part of the Tethys Sea), may 
have been present in the Mediterranean and survived the desiccation period. In fact, 
this hypothesis is highly unlikely but needs to be kept in mind. A more likely scenario 
derives from the fact that a connection between the Red Sea and the Mediterranean has 
been tampered with for a very long time, starting in ancient Egyptian, and later, Roman 
times. Besides those extreme cases, the vast majority, if not all, of species with Red Sea 
affi  nities that are present in the Mediterranean did invade after 1869. 

Interestingly, the dates of Lessepsian invasion span a very long period. In the case of 
the species that will be presented here, the date of fi rst invasion varies from the late 1900s 
to the present (Table 1). Because the time of invasion is variable for diff erent Lessepsian 
invaders, a precise record of the fi rst occurrence of invasion is of crucial importance to 
fully appreciate genetic data. Th is information is often available for Lessepsian species, 
together with a detailed spatio-temporal picture of their spread in the Mediterranean 
(Golani et al., 2002). 



Th e genetics of Lessepsian bioinvasions   73

Th erefore, Lessepsian migrants off er some defi nite advantages for scientists. Since 
the timing of invasion, the invasion route, and the invader’s geographic source are known, 
theoretical predictions seemed fairly simple. Some individuals from the Red Sea would 
enter the Mediterranean via the Suez Canal, and would later expand in the novel en-
vironment. Th is situation would predict a likely genetic bottleneck due to an invading 
sub-sample of the original populations, followed by a fast range expansion, a pattern that 
is consistent with other documented invasions (e.g. Sax et al., 2005).

Our goal here is to review and compare genetic studies of Lessepsian migrants 
in order to determine if this unique bioinvasion follows some general patterns. We 
also want to assess if Lessepsian invasions can be used to test specifi c theoretical 
predictions. 

Specifi cally, we want to determine if (1) invasions were accompanied by bottlenecks, 
(2) success could be associated with genetic diversity, and if (3) bottlenecked populations 
displayed rapid population expansions.

METHODS AND APPROACHES

Th e genetic approaches used to study Lessepsian migrants refl ect the general evolu-
tion of methodological toolboxes used in the fi eld of molecular ecology and evolu-
tion. Early studies of Lessepsian invaders capitalized on the rapid, easy, and relatively 
cheap allozyme assays (e.g. Lavee and Ritte, 1994; Golani and Ritte 1999; Safriel and 
Ritte, 1986). Th ese studies allowed the establishment of the bases of understanding 
for the genetic patterns displayed by marine bioinvaders. However, while genetic 
bottlenecks and their associated lowered genetic diversity were expected, these early 
studies showed that Lessepsian migrants did not show such genetic signatures. As for 
the rest of the fi eld, criticisms of allozymic methods mostly focused on the lack of 
resolution and the potential for the presence of selective pressure. Th erefore the logi-
cal next step was to use neutral DNA markers. Th e workhorse of population genetics 
being the use of mitochondrial DNA sequences, the second wave of studies used such 
markers. Unexpectedly, these studies confi rmed previous results based on allozymes. 
Indeed, the surprising lack of bottlenecks in Lessepsian migrants was found not to 
be due to an artifact of the allozymic methods, but was real and confi rmed by neutral 
mitochondrial markers (e.g. Bucciarelli et al., 2002; Hassan et al. 2003; but see Golani 
et al., 2007 for a bottleneck). It is clear that DNA sequences have provided some 
unique insight in the understanding of the genetics of Lessepsian bioinvaders, yet, it 
is also clear that more power could be gained by using larger datasets and more vari-
able markers. Microsatellites and SNPs seem to be ideal candidates and the obvious 
choices for such approaches. Th ey have not yet been used on Lessepsian migrants, but 
it is likely that they will soon be, and it is also likely that new light will then be shed 
on the Lessepsian system.
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GENETIC STUDIES

Electrophoretic analysis of Red Sea and Mediterranean populations are available for 
Aphanius dispar (Rüppell, 1829). Th is Teleost fi sh was considered for many years to be a 
Lessepsian migrant but in all probability was in fact present in the Mediterranean prior 
to the opening of the Suez Canal (Kornfi eld and Nevo, 1972) and hence it will be not 
included in our review.

Genetic approaches focusing on bona-fi de Lessepsian migrants started in 1994. 
Currently 14 species have been investigated (which is less than 5% of the known invad-
ers) (Table 1). Th ese 14 species include 1 marine angiosperm, Halophyla stipulacea, 6 
invertebrates, and 7 fi sh species. 

In the fi eld of Lessepsian invasion, molecular techniques have been mainly employed 
to contrast the levels of genetic diversity between native and invasive populations (Golani 
and Ritte, 1999; Bucciarelli et al., 2002; Karako et al., 2002; Bonhomme et al., 2003; Has-
san et al., 2003; Azzurro et al., 2006) and to test for genetic structuring within invasive 
populations (Karako et al., 2002; Azzurro et al., 2006; Terranova et al., 2006). Genetic 
studies have been also used to explore demographic aspects within the Mediterranean 
(Azzurro et al., 2006; Iannotta et al., 2007), to support taxonomy (Golani and Ritte, 
1999; Kasapidis et al., 2007) and to unveil cryptic sibling species (Bucciarelli et al., 2002) 

Many Lessepsian species tend to be quite cryptic (such as interstitial polychaetes and 
fl atworms), and are likely to be overlooked for a long time before being recorded. However, 
the 14 species that were used in this analysis are large and conspicuous and are therefore 
likely to have been noticed very soon after their fi rst occurrence in the Mediterranean. 

GENETICAL VARIABILITY IN LESSEPSIAN INVADERS 

Population bottleneck, often associated with a loss of genetic variability, seems to be a 
common feature of biological invasions (Allendorf and Lundquist, 2003). In this review, 
the presence of bottlenecks could be addressed for 12 out of 14 studied species. Noticeably, 
most of Lessepsian invaders (10 out of 12) did not display any sign of founder eff ect, with 
any apparent loss of genetic diversity from the Red Sea to the Mediterranean (see Table 1).

Nevertheless, sampling was biased since it was conducted mostly in the areas of 
major abundances for these species (the Eastern Mediterranean). In addition, bias was 
also introduced in sampling the source populations, because specimens were mainly 
collected in the northern Red Sea, particularly Eilat (Israel).

In the majority of the studied cases, the original invasion occurred a long time ago 
(Table 1). Older and successive waves of invaders might have added to incipient popula-
tions, making it diffi  cult to detect specifi c signatures of single founding episodes. A chance 
to do away with these confounding eff ects was to focus on early invasive events, possibly 
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far from the source of invasion. In the last few years, three diff erent papers (Azzurro et 
al., 2006; Terranova et al., 2006; Golani et al., 2007) presented such kinds of data, thus 
overcoming pragmatic diffi  culties in studying recently founded populations and making 
a step forward into the exploration of the Lessepsian invasive dynamics.

In Brachidontes pharaonis, no diff erence in both haplotype and nucleotide diversity 
was detected between the youngest populations (of Sicily) and the oldest populations 
of the Eastern Mediterranean Sea (Terranova et al., 2006). Within the Mediterranean, 
some regional clustering and the existence of unique haplotypes have been evidenced 
for this species, but the input of larvae from ballast waters seemed to be the most likely 
explanation, with no reference to the Lessepsian process (Shefer et al., 2004).

Th e absence of genetic diff erentiation between Mediterranean and Red Sea popula-
tions of B. pharaonis (Shefer et al., 2004; Terranova et al., 2006) and mostly of some fi sh 
species, i.e. the hardyhead silverside Atherinomorus lacunosus (Bucciarelli et al., 2002), the 
rabbitfi shes Siganus luridus and S. rivulatus (Bonhomme et al., 2003; Hassan et al., 2003) 
and the goatfi shes Upeneus pori and U. maluccensis (Golani and Ritte, 1999; Hassan and 
Bonhomme, 2005), contributed to develop the idea that Lessepsian migration involves 
many individuals since its early phases and continuous gene fl ow from the Red Sea.

Th ese fi ndings were later confi rmed by Azzurro et al. (2006), which showed no parti-
tioning between the Mediterranean and the Red Sea populations of S. luridus. Importantly, 
mitochondrial diversity appeared to be preserved also in the youngest and westernmost 
population of Linosa, with no traces of founder events, suggesting that the genetic variability 
was ‘there’ from the very beginning of the process. Th is could indicate that recruitment 
processes occur “en masse” with relatively high levels of genetic diversity within a cohort. 
At the same time, these authors showed a weak but detectable structure between Red 
Sea and Mediterranean populations, with a slight lowering of the genetic diversity in the 
latter. Th ese fi ndings were based on a wider geographic sampling with respect to previous 
studies (Bonhomme et al., 2003; Hassan et al., 2003) and highlighted the importance to 
sample along the entire introduced range of Lessepsian invaders, not only close to their 
entry point. Many other marine invaders have showed little or no genetic erosion during 
the colonization process (Holland, 2001; Wares, 2005) and this was mainly due to very 
large propagule sizes or even to repeated introductions from diff erent source areas.

In contrast, the Blue-spotted cornetfi sh displayed very strong evidence of a genuine 
bottlenecking event, with only 2 haplotypes being present in the Mediterranean (Fig. 1), 
suggesting that a single invasion event by as few as two females had generated its invasion 
in the Mediterranean Sea (Golani et al., 2007). Th e Blue-spotted cornetfi sh, Fistularia 
commersonii, is now considered one of the 100 ‘worst’ invasive species of Europe (Daisie, 
2008. http: //www.europe-aliens.org), as it only recently entered the Mediterranean 
(Golani, 2000) yet it is rapidly spreading through both the eastern and western basin. 

So far, no similar episodes are available for the Mediterranean Sea but the migra-
tion of Red Sea species in the form of a small number of individuals is likely to have 
occurred several times. In fact, several Lessepsian species have been tallied on the basis 
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of only one or few specimens, with no further signs of population growth or expansion 
(Golani et al., 2002). In these cases, it is diffi  cult to support the idea of a massive and 
continuous migration of individuals, since it would result in repeated sightings, or even 
in sustaining the incipient population during its establishment process.

Fig. 1. Phylogenetic relationships of Fistularia commersonii samples based on mitochondrial control 
region sequences based on Bayesian and Neighbor-Joining reconstruction methods. Numbers 
next to the main nodes correspond to Bayesian consensus numbers (left fi gures) and Neighbor-
Joining bootstrap support (right fi gures, 2000 replicates). Sample codes and sampling locality, 
and the two Mediterranean (Lessepsian) haplotypes are identifi ed in the fi gure. Two outgroups 
were used, F. petimba, collected in Taiwan, and F. tabacaria, collected in Sao Tomé. 
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Only one other Lessepsian species, the sea star Asterina burtoni (Karako et al., 2002) 
displayed a signifi cant loss in genetic diversity, but this was attributed to diff erences in 
the reproductive mode adopted by this species in the Mediterranean and in the Red Sea 
(fi ssiparity vs. sexual reproduction).

GENETIC DIVERSITY, TEMPORAL DYNAMICS AND INVASION SUCCESS 

Many invaders undergo variable periods of time between initial establishment and sub-
sequent population growth and expansion. Such lags of time are a common feature in 
biological invasions (Kowarik, 1995) and it may have diverse ecological and demographic 
causes or even it may be determined by time needed for evolutionary adaptation to the 
new environment (Holt et al., 2005).

As far as Lessepsians are concerned, genetic studies did not support any conclusion 
on their temporal dynamics and documented time lags have been justifi ed on the basis 
of alternative ecological reasons. Th e only available examples are the case of the recently 
settled population of S. luridus in Linosa, which appeared three decades after its fi rst 
settlement in the Sicily Channel (Azzurro and Andaloro, 2004; Azzurro et al., 2006), 
and of the mussel B. pharaonis, which underwent population explosion (massive forma-
tions of beds) after a lag of about 120 years since its fi rst establishment in the Israeli 
coasts (Rilov et al., 2004). Th is lack of knowledge is not surprising among Lessepsians, 
since the role of evolutionary changes in the colonization process is seldom explored in 
invasive species (Sakai et al., 2001).

Th e success of an exotic species, apparently not genetically adapted to its new en-
vironmental conditions, is always diffi  cult to explain. All the analyzed studies deal with 
successful invaders but (after the case of F. commersonii) we have seen that their genetic 
variability may span between opposites, from the absence of genetic loss to severe bot-
tlenek. Th e case of F. commersonii provides a clear example that an extreme bottleneck 
does not preclude population growth and rapid geographical expansion. 

Th is also draws attention to an emblematic paradox of invasion biology:  “how bot-
tlenecked populations that typically have low fi tness can become invasive?” (Frankham, 
2004). Actually, the observed contradiction between the decline in genetic diversity 
and invasive success seems to be a rule rather than an exception in introduced species 
(Dlugosh and Parker, 2007).

Th e invasion success of F. commersonii, regardless of its genomic uniformity, also 
debunks the apparently coherent pattern in the dynamic of Lessepsian invasions, as 
probably expected from previous works (e.g. Golani and Ritte, 1999; Bonhomme et al., 
2003; Hassan et al., 2003; Hassan and Bonhomme, 2005; Azzurro et al., 2006). 

To sum up, there is no apparent association between genetic diversity and inva-
sive success in Lessepsian migrants and our fi ndings reaffi  rm a well-known diffi  culty 
of predicting the success of new invaders on the basis of this information. Yet, it is 
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possible that neutral genetic markers were poor indicators of heritable variation in 
adaptive traits (McKay and Latta, 2002), but the discussion of this hypothesis goes 
far beyond the purposes of this paper. Alternatively, high genetic variability may have 
little signifi cance for Lessepsians, as hypothesized by Golani and Ritte (1999) and 
ecological traits could much more important in determining the success of these or-
ganisms (Golani, 1993). 

During the establishment process, a plethora of biotic and abiotic variables, together 
with demographic and environmental stochasticity probably interplay their roles (Lock-
wood et al., 2007) making it diffi  cult to rationalize the factors of success for invasive 
species. Considering the young history of the Lessepsian invaders, it is possible that 
some of them had had enough phenotypic plasticity (the ability to cope with a range of 
environmental conditions) to survive, reproduce and succeed in their novel environment, 
with ‘no need’ of evolutionary adaptation. Th is can be likely at least for those species for 
which there was no lag of time between the initial colonization and subsequent popula-
tion explosion. According to Allendorf and Lundquist (2003) and to Sax and Brown 
(2000) some species may be intrinsically better competitors because they evolved in a 
more competitive environment. Hence, the possibility of a competitive superiority of 
these colonists coming from a species rich region (the Red Sea), should be also taken 
into appropriate account.

It is equally true that successful Lessepsian migrants, which seem adapted or even 
‘preadapted’ (Sakai et al., 2001) to the variety of the conditions of coastal Mediterranean 
habitats, might reasonably have some limits to their performances, with relation to biotic 
and abiotic variables, such as temperature (noteworthy are the mortalities which have 
been observed for F. commersonii during the coldest winter times:  Azzurro, personal 
information).

Ultimately, the new biotic and abiotic conditions encountered in the Mediter-
ranean Sea represent new selective forces for Lessepsian migrants and selective eff ects 
are expected in these populations, even if the studies available up to date do not provide 
evidence of that. Selection might occur in response to environmental forces, such as 
temperature and photoperiod, or to biological variables such as competitors, predators, 
prey and parasites. 

RESEARCH PERSPECTIVES

Molecular techniques represent a new approach in invasion biology and certainly much 
has to be done in this fi eld. Moreover the Lessepsian phenomenon has a relatively young 
history with only a small fraction of the Red Sea species that have already established 
in the Mediterranean. For the majority of these colonists, we have no information on 
their genetic structure and we have already lost the opportunity to study their coloniza-
tion from the beginning. Nevertheless, other species are currently still in the process of 
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invading the Mediterranean and many other organisms are extending their distribution 
range into the Mediterranean, thus off ering new study opportunities.

Genetic diff erences in invasive and source population might be masked by sam-
pling biases. Th erefore it is important to focus on the early phases of the invasive process 
and to sample the largest possible geographical area for comprehensive genetic studies. 
Marginal populations at the westernmost edge of the distribution range, and the study 
of the colonization at its earliest stages, turned out to be particularly informative (Az-
zurro, 2006; Terranova et al., 2006; Golani et al., 2007). Early settled populations are 
unique events that would allow to simplify theoretical work and help to determine the 
fundamental variables of the colonization process, such as the propagule size, one of the 
least documented aspect in invasion biology ( Lockwood et al., 2007).

Our ability to detect the eff ects of founder events will also depend upon the measure 
that we use for genetic variation. Techniques such as microsatellites and SNPs have seldom 
been employed with Lessepsians and it is likely that they will yield new and exciting results. 

Clearly, genetic information on a great number of Lessepsians would give us a 
better and more comprehensive understanding of this phenomenon. Nevertheless, 
the monitoring of selected key species at the genetic level may be used to test directly 
our hypothesis. For instance, given the large contemporary size of the Mediterranean 
population of F. commersonii, new migrants from the Red Sea are predicted to have 
little eff ects in altering haplotype frequencies and this would deserve to be assessed 
in the future. 

CONCLUSIONS

Our review certainly failed to reconstruct a uniform pattern for the genetic of Lessep-
sian invaders, which likely includes a variety of diff erent invasive models. However we 
have enough information to conclude that the passage used by larvae and/or adults to 
enter the Mediterranean (the Suez Canal) had the potential to sustain great numbers 
of migrants and high gene fl ow, at least for most of these colonists. Interestingly, there 
is also a homogeneous phylogeographical pattern for the species that have migrated 
from the Atlantic Ocean into the Mediterranean during geological times (Patarnello et 
al., 2007). Th us, the biogeographical relationships between the Mediterranean and its 
oceanic connections remain somehow controversial at the genetic level. 

As far as Lessepsian migrants are concerned, beside spatial and temporal biases of 
previous studies, uncertainty may arise from the uniqueness of single species but also 
from the rapid environmental changes that are now happening in the Mediterranean Sea. 
Th e same Lessepsian pathway is far from steady in its function. In fact, the Suez Canal 
has changed much in the course of its history, having experienced drastic environmental 
modifi cations (e.g. the decline in salinity of the Bitter Lakes; see Golani, this volume) 
together with important human-inducted alterations, which occurred at the release areas 
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(i.e. the damming of the Nile). Th erefore its capacity to act as a genetic barrier and to 
produce phylogeographical breaks between native and donor populations has signifi cantly 
changed since its opening.

Above all, the warming trend of the Mediterranean is providing more suitable 
ecological conditions for Lessepsian migrants (CIESM, 2008). Th ese species, which 
have entered a temperate sea, are typically thermophilic, with tropical or subtropical 
origin (Golani et al., 2002) and their increasing number and success represent one of the 
most visible consequences of climate change within the Mediterranean realm (Bianchi, 
2007; Azzurro, 2008 and references therein included). Th e occurrence of evolutionary 
adaptive processes in Lessepsian invaders highlights the fact that the Mediterranean 
environment may be changing towards the requirements of these tropical species, rather 
than the opposite. 
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